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ABSTRACT

A review of current understanding of energy redistribution processes
within the ocean internal wave field will be given. Relaxation rates for "test
waves" in a Garrett-Munk model ocean have mainly been calculated using
Hasselmann transport theory or related methods. Computations show that
GM76 is approximately a steady state spectrum for 3-wave interactions except
for frequencies near the inertial frequency and at the lowest vertical mode-
numbers. The lack of variation of the internal wave coupling coefficients
allows discussion of results in terms of McComas and Bretherton's three
limiting mechanisms; Induced Diffusion, Elastic Scattering and Parametric
Subharmonic Instability. In the high vertical modenumber regime Induced
Diffusion provides the most significant contribution. Transfer rates are high
here and there has been concern for the validity of the Hasselmann theory.
However, recent calculations by Meiss and Watson which relate Induced
Diffusion to the Taylor Goldstein equation yield relaxation rates which are valid
over a much extended domain.

INTRODUCTION

Within the last five years considerable progress has been made in
understanding the role of wave-wave interactions in redistributing energy and in
determining the spectral shape of oceanic internal waves. The calculations
which have led to this understanding have mostly been based on the notion that
the internal wavefield is weakly turbulent and representable as a statistical
ensemble of weakly coupled wave modes. In this case a transport theory due to
Hasselmann is valid which provides an evolution equation for action density in
wavenumber space ensemble averaged over realizations of the chosen wave-
field.

The earliest detailed calculations which used the Garrett-Munk spectrum
to represent the chosen wavefield were performed by Olbers and by McComas
and Bretherton. The latter work was particularly important for its identifica-
tion of the three limiting triad mechanisms named Induced Diffusion, Elastic
Scattering and Parametric Subharmonic Instability. In terms of these mech-
anisms the computed energy transfer rates were readily understood, and a
physically appealing "scenario for the genesis and maintenance of the universal
(internal wave) spectrum” was provided.

An inconsistency was immediately apparent between computed results and
assumptions made by the underlying theory: At the intermediate and high
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internal wave frequencies where Induced Diffusion is the dominant transfer
mechanism, energy transfer times are shorter than a wave period. A different
theory is required here.

Meiss and Watson have recently exploited a relationship between Induced
Diffusion and a time-dependent form of the Taylor-Goldstein equation to derive
transfer rates for Induced Diffusion which avoid any weak interaction assump-
tion. These (corrected) rates are considerably lower than those previously
predicted; however, no substantial modification of McComas and Bretherton’s
transfer picture is required.

WEAK INTERACTION THEORY

The wide success of the Garrett-Munk (GM) models!,2 which use linear-
ized wavefunctions and wave dispersion to relate measurements has suggested
that a sensible first approximation should treat interactions between internal
waves as weakly nonlinear. This allows the use of a number of tractable
methods for studying energy transport within the internal wavefield. Most
popular among these is the transport theory due to‘Hasselmann3, which leads to
an equation for the evolution of action density in wavenumber space.

As the starting point we shall take the set of (Fourier) mode equations for
(complex) amplitudes of fluid displacement. These are derived from the
inviscid fluid equations with little difficulty and take the form#%

d . k ki »
dt % * % % T E,, [bs-i—m “Fm 2 f2m * dkm Cm 2f °m
+ 65*.4*[‘.‘_(}@ aZ a*m] . (1

In the linear approximation when the right hand side (RHS) is zero, the ak
represent amplitudes of travelling plane waves having wavenumber k and
frequency Wk. Wave triad terms appear on the RHS and arise from
quadratically Ponlinear terms in the fluid equations. For an ocean model with
buoyancy (Vaisala) frequency N(z) = constant, independent of depth z, an
Eulerian derivation?:6 gives equation (1) exactly whereas a Lagrangian deriva-
tion7-10 yields (in more complicated fashion) modified coupling coefficients

Gi,ﬁ*Gim+(wk-Ul-wm)A§m , etc. (2)

as well as wave quartets and higher order interactions. We note, however, that
to lowest order of nonlinearity the resonant (physical) energy exchange between
modes is independent of representation.

A complete descri{:tion of the wavefield requires zero (linear) frequency
Horizontal Eddy Modesl! as well as those with frequencies between the coriolis
and buoyancy limits, The coupling between these two types of mode vanishes
on resonance and therefore gives no contribution to internal wave energy
transport at lowest order (on the other hand momentum transport is affected by
Eddy scattering). We will see later, however, that a satisfactbry description of
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energy transport by the important Induced Diffusion mechanism requires
consideration of off-resonant triads and the influence of the Eddy modes here
should be investigated.

There are several recipes for proceeding from the evolution equations for
mode amplitude ak to closed evolution equations for average wave action {Jk> ~
= <|ak|2)12'1’4. ~ For all of these it is sufficient to consider a subdivision of
the entire wavefield, the test wave system. Here the test wave is a labelled
wave (given subscript k, say) whose properties are to be monitored. Many (9
pairs of background waves interact with the test wave and couple with one
another only through the test wave as intermediary. There is no direct coupling
between ambient members of different triadsl5,

An essential ingredient of all recipes is the assumption:

(Al) There exists a time scale separation between fast linear oscillation

(Tlinear ~ ﬁ) and slow nonlinear transfer (Thonlinear . _L ).
Y Yk °

This allows the use of multiple time scale perturbation theory. On the slow
time scale transfer results to lowest order from secular growth of the action on
account of wave triads that satisfy a resonance matching condition between
linear frequencies

U.‘.‘.i wé-wm=0 4)
Finally, to evaluate the transfer rate YK in terms of known quantities
requires a closure assumption in the form of:™

(A2) The Random Phase Approximationl7-18, This assumes that wave
phases decorrelate rapidly compared with the transfer time so that
(operationally) fourth and higher order cumulants can be discarded, and fourth
moments expressed as products of second moments (actions). Although it is
clear that nonlinear interactions between the test wave system and
complementary waves must lead to some phase randomizing, the extent to
which this happens is not controlled in the calculation so this last assumption
requires an act of faith.

The resulting transport equation is the familiar wave analogue of the
particle Boltzmann equation

d%-(JE> =; fdgdm b Ewp - ) dk=l-m
xir=1? {<Ip<agd- 3, KIpp=aAmd} (®)

The source function on the RHS comprises an integral over the kinematic
region, represented by the frequency and momentum delta function, of a
product of two factors: |I':|% is a geometric factor formed out of simple
combinations of the G-coupling coefficients of the dynamical equationsl9. The
second factor contains the specification of the ambient spectrum and has
nothing to do with the dynamics. For the calculations to be described shortly
each angle bracket represents one of the GM model action spectra.
It is useful to rewrite equation (5) in schematic form:
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d
E(JE) =1k) -2 ¥ <JB.> . (6)

The quantity I(k) arises from the product of the l- and m-wave actions. It
represents excitation of the test wave by coalescent scattenng of background
waves, and feeds action into wavenumbers near k20. The second term (which
defines the coefficient vp) has an identity that is quite independent of the
transport equation. It can be derived using Langevin methods!® and does not
require a random phase approximation. Vp is the autocorrelation decay rate
of an arbitrary initial wave amplitude, and is of fundamental importance for
understanding energy transport processes. Finally, a Boltzmann rate can be
defined as

2p=01-2 ¥ (JE))/(JE > (7)

which gives the net rate of action flow through k k. If the Boltzmann rate is
small in some region of k-values this indicates that the ambient spectrum may
be a close representation of a steady state therel. If, in addition, the
relaxation rate V, is large then any ripple added to the spectrum will be
quickly smoothed by the wave interactions and a degree of universality will be
apparent.

COMPUTED TRANSFER RATES USING W.LT.

The early detailed calculations2l which used GM spectra as input were
performed by Olbers8 and by McComas and Bretherton?. They used an
exponential buoyancy profile

N@ = N_ e*/® ®)

and a WKB approximation to provide a dispersion relation and to evaluate the
coupling coefficients, but assumed a constant value of N throughout a box
within which three-dimensional wave propagation is confined. Later caicula-
tions by Watson et. al.10,19 used an exponential profile throughout the box, and
discrete modes for the vertical direction. The two approaches are essentially
equivalent except at the lowest modenumbers, and to relate the calculations we
can use the WKB relation

. N(z)
kZB =~ jr -No— 9
which matches (integer) modenumber j with local vertical wavenumber kz.

In broad terms the results of these calculations show a systematic
transfer of wave energy (action x frequency) into near-inertial frequencies and

Tit is important to distinguish between steady state and equilibrium.
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towards smaller vertical wavelengths. Much of the spectrum, however, appears
to be near steady state. For a measure of this it is useful to consider the ratio
(R) of net Boltzmann rate to test wave excitation ratel9. This measure of
action throughput of a region divided by action input is plotted as a function of
linear wave frequency (in units of coriolis frequency f) in Figure 1. Each curve
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Figure 1. Numerical evaluation of the ratio (R) of net Boltzmann rate to test
wave excitation rate. Curves are labelled by a value of mode-
number.,

is labelled by a value of modenumber. For modenumbers j 2 10 and frequencies
W2 3f the ratio is seen to be small. In particular, for j = 10, R is less than five
percent in this region. For high modenumbers ( > 100), R is found to be
fractions of one percent indicating a domain close to steady state. To obtain a
picture of energy transfer across the wavefield we can arbitrarily define a
'steady state’ to be one in which R < 10%. Figure 2 results from using the GM
76 model spectrum. Here the steady region is unshaded whereas the shaded
(nonsteady) regions show the sign of the Boltzmann rate to indicate whether
energy is growing {(+ values) or being depleted (- values). Specifically then,
energy flow is seen to be from low modenumbers and most frequencies into
intermediate and high modenumbers at low frequencies. Both Olbers and
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Figure 2. Evergy growth (+) and energy decay (-) regions using the GM76
model spectrum. The "steady" region is where R < 10%.

McComas and Bretherton estimate the energy transfer rate across GM 75 to be
3 x 10-3 Wm-2 which gives an energy turnover time of approximately 10 days.
For GM 76 and using discrete modes, Pomphrey, Meiss and Watsonl9 estimate a
somewhat lower value of 6.4 x 10-% Wm-2, Both estimates can easily be
faulted, nevertheless they suggest a figure near 1 x 10-3 Wm-2 in reasonable
agreement with Leaman's observational data2? of downward energy flux be-
neath the thermocline. .

Although the source function which determines the results couples triads
from a continuum of scales, McComas and Bretherton greatly increased our
understanding of the underlying dynamics by identifying three simple triad
classes which appear to dominate the transfer. This simplification is possible,
in large part, because of the small variation of the dynamical factor in the
source function compared with the spectral factor. To illustrate this we show
contours of |I” /2 using a "box representation” (Figure 3):

If for any three waves with horizontal wavenumbers k, £ and m we plot |m|
versus [£| for a given value of test wavenumber k, triads which satisfy the
momentum condition

kxl-m=0 (10a)
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Figure 3. Contours of the dynamical factor [/"*|2 of the source function in
equation (5) using a "box representation” to define the kinematically
allowed region.

must lie on or within an open rectangle whose corners intersect the axes at
Imi = k| and |£]| = | k|. Triads which correspond to points lying on a box
boundary have colinear wavevectors. The frequency conditions

W, £ -Ww =

K w f] m 0 (10b)
further restrict a given triad to lie on a curve within the kinematic box. In the
absence of a coriolis frequency these curves are straight lines whose slope (use
the dispersion relation for internal waves) depends only on the relative
magnitudes of vertical wavenumber restricted by

k, * lz-mz=o . (10c)

When f is included, lines are bent into curves with the curvature small except in
the vicinity of the box corners.
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Figure 3 shows a plot of | I"+|2 obtained for f = 0. There is seen to be
little variation of this coefficient throughout the kinematic box. On the other
hand the strong wavenumber dependence of GM spectra allows a variation of
the spectral factor which spans several decades. It follows that not only does
the spectral factor of the source function determine the signature of transfer,
but it also determines much of the relative strength also, with transfer
strongest when there exists an action imbalance between triad members.

Two of the triad classes identified by McComas and Bretherton have
members with widely separate frequencies (Figure 4): Induced Diffusion (I.D.)
consists of two nearly identical high frequency waves (one of them is the test-
wave) which interact with a near inertial wave of much smaller wavenumber.
The name Induced Diffusion arises because for an arbitrary spectrum the low
frequency waves can be shown to act as a catalyst for diffusion of wave action.
For GM spectra diffusion is strongest in the vertical z-direction. Spectra for
which there exists equipartition of action among vertical modes are in diffusive
steady state with respect to this mechanism. GM76 has such an equipartitioned
form at high modenumber. A second mechanism is named Elastic Scattering
(E.S.). This differs from I.D. only by description of wave properties in the z-
direction: Two waves with nearly equal frequency and wavenumber magnitude,
but opposite vertical propagation directions, interact with a wave of much
lower frequency with double the vertical wavenumber. The test wave is again
one of the high frequency waves. If initially the upgoing wave has less/more
energy than the downgoing wave, the two energies will approach the same value
asymptotically with relaxation rate 4 v .

Finally, the Parametric Subharmonic Instability (P.S.l.) mechanism de-
scribes a low vertical wavenumber test wave which decays into two high
vertical wavenumber waves with approximately one-half the frequency. This
eventually pushes energy into the inertial band at high vertical wavenumber
(recall Figure 2 which shows growth here).

The importance of these mechanisms in shaping the observed spectrum
can be assessed by evaluating their relaxation rates. McComas computed
numerically the initial relaxation of an appropriate bump or spike perturbation
added to a GM background. Alternatively, the appropriate limits of the
dynamical coupling coefficients corresponding to the three triad classes may be
taken, and the summations and integrations of the source function performed
explicitly to obtain analytical estimates.

Typical results are shown in Figure 5: Relaxation rate vp Is plotted as a
function of linear frequency. Each curve is labelled by a value of modenumber.
At low frequencies (w S 3f) only the P.S.I. mechanism is valid. At higher
frequencies the L.D. and E.S. contributions are shown. (P.S.I. remains valid but
its contribution is minor and not shown.) LD. is dominant, and in fact does a
remarkable job of reproducing the full numerical evaluation of the source
function. The unlabelled dashed curve that runs acrass the figure represents
equality between relaxation rate and linear frequency. Even at moderately low
modenumbers a problem is clearly evident: The linear frequency curve disects
the I.D. contributions. Above and near this curve, relaxation rates are too rapid
to justify the time scale separation used to derive the transport equationZ26.

To summarize the transport results obtained using weak interaction
theory we use Figure 6 which contains a sample of results obtained from a full
evaluation of the source function in equation (5). The low frequency domain w
< 3f is dominated by the P.S.I. mechanism. Nonlinear relaxation rates are low
enough that we can have some confidence that the resonant weak interaction
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Figure 4. McComas and Bretherton's limiting triad interaction mechanisms.
Their identification allows a simplified description of energy trans-
fer within a Garrett-Munk spectrum.
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theory which led to the results may be valid. At least we can say there is no
obvious inconsistency with assumptions made by the theory. For higher
frequencies and vertical modenumbers j $ 10 an assortment of triads (A.T.)
gives rise to transfer and the rates are again low enough to expect the theory is
valid. In a separate contribution to these Proceedings, Watson has demon-
strated that the E.S. mechanism is also adequately described by weak resonant
transport theory. We are left with the domain j 2 10 and w 25f and here the
story is different: the rates are dominated by I.D. and these are too high to
have faith in the theory.

CORRECTED DESCRIPTION OF INDUCED DIFFUSION

The physical description of 1.D. as the interaction between small scale,
high frequency internal waves and a much larger scale, low frequency (near
horizontal) flow suggests a relationship with the Taylor-Goldstein equation
which is used to discuss the stability of stratified shear flows. Meiss and
WatsonZ7 have recently exploitedthis relationship to derive relaxation rates for
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Figure 6. A summary of numerical transport results using the GM76 spectrum.
Curves are labelled by value of modenumber.

internal waves in the I.D. domain. Their analysis is based on a linear equation,
makes no weak interaction assumption, and contains the weak resonant inter-
action results as a special case.
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The basic equation for this study takes the form

ou du
2 2 2 - — e a i )
DVW+VQ§Z_622 Vhw+52 [az ixvhgz] s
w=Dg, (1)
where
0
Vh =V-/Z\a-i s D:aét+ u .Vh,
2
’ - [V'z(fz & NP9 )] Ao
Oz

This equation describes small amplitude internal waves in a vertically sheared
horizontal flow.  ulr,t) describes the flow which results from a superposition
of linear near-inertial frequency internal waves. £z is the vertical fluid
displacement and w the vertical velocity. Q is a _frequency operator for
internal waves. The usual Taylor-Goldstein equationZ8 is obtained by setting
the Coriolis frequency term equal to zero on the RHS. On the other hand, if
both terms on the RHS are ignored the resulting equation is shown by Meiss and
Watson to be equivalent to Induced Diffusion. Since the terms on the RHS can
be shown to be larger than any other omitted in the derivation from the full
Euler equations (notably the nonlinear convective velocity term), these two
terms can be regarded as the leading corrections to the L.D. aprroximation®and
they can be used to estimate its validity (see later).

By Fourier expanding in a basis of linear internal waves (these are
solutions of equation (11) when u = 0), a set of mode equations are obtained
which describe the evolution of the small scale amplitudes:

aE+iw-k- aE =;n: A';\_‘(t) am

A (1) = hik,m) 3 @, 6 _ a* s ) 2
E =7 g-large scale £ "k-m-2 k-m+ 4
waves

B

a£+iw£a£=0 ’wf.zf

A subscript £ denotes the long waves in the system. Since one member of each
I.D. triad is a long wave, the evolution equation for a short wave amplitude is
linear in all other short wave amplitudes ap = kg . The large scale
amplitudes execute simple harmonic oscillations at héar-inertial frequencies
with their statistics described by the GM spectrum. The coefficient h(k,m) is
an appropriate long wavelength limit of the dynamical coefficients appearing in
equation (1).
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Mode equation (12) is a linear stochastic differential equation with
Gaussian fluctuating coefficients. These are simplifying features which Meiss
and Watson exploit in deriving a Langevin equation for the relaxation of small
scale amplitudes. This equation has the form

5 @Y = - (0 + 70 Ca> (13)

The real part of ¥{t) determines the relaxation rate. It is a time dependent
quantity in terms of which an e- folding rate constant p is defined as

v-1

/ Re?(t)dt =1 (14)

[o]

In the L.D. limit an exact expression for ¥ (t} is obtained:

2 2
)‘(t)=7r§ [ dfdm hy Gom) D (O ¢jag)“y 8 mip

where

1 rt iw, -w_*wp)r
Di(t)=7/°' dre!“k ~“m YL . (15)

and hy is the appropriate limit of h. All time dependence is contained in the
quantity Di, which in the "static" limit

I

> ——
W, - ES
k™ “m™“

becomes a frequency delta function. The resulting (approximate) expression for
the rate constant becomes identical to the resonant weak interaction rate vp
which gave rise to the troublesome L.D. curves in Figures 5 and 6.

To determine the accuracy of the L.D. rates (15) requires consideration
not only of the coefficient hy, but also the corrections from terms on the RHS
of equation (l11). Meiss and Watson use perturbation theory to show this
correction is never greater than 10% in a domain extending in frequency from
5-31 f and in modenumber from 10-250. The evaluation of the exact expression
(15) can be concluded as giving accurate L.D. rates. Figure 7 displays these
rates. They are seen to be substantially lower than those predicted by weak
interaction theory, being within a factor of ten of the linear frequency even at
the highest modenumbers. It is important to note that the linear frequency
curve does not this time signify a necessary breakdown of the calculation since
the new rates were obtained from a linear equation. These latest results
therefore represent a considerable extension of the domain in which plausible
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Figure 7. Curves of relaxation rate versus linear frequency obtained by Meiss
and Watson using an "exact" descripton of the Induced Diffusion
domain. No weak interaction assumption was needed to obtain these
curves.

computations of energy transport exist, and if we take these results in
conjunction with those of weak interaction theory at low frequencies and
modenumbers, the domain is full.

SUMMARY

In this review we have avoided asking whether it is valid to model internal
wave interactions using a modal description. This crucial question is discussed
elsewhere in these proceedings29. A brief survey of modal calculations of
energy transfer within the oceanic internal wavefield has been given, and we
have indicated that plausible results are obtained by patching together results
using weak interaction theory at low frequencies and modenumbers with those
based on a modification of the Taylor-Goldstein equation at high frequencies
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and modenumbers. These latter results show ¢nergy transfer rates substantially
lower than those predicted by weak interaction theory, however McComas'
appealing "scenario for the genesis and maintenance of the universal (internal
wave) spectrum"24 requires no essential modification. We close by repeating
this scenario:

..."Energy input at high frequencies is redistributed by the Induced
Diffusion and Elastic Scattering Mechanisms to the universal spectrum of the
deep ocean. The main energy input is at small vertical wavenumber (mode-
number) and at low frequencies. The low fréquency energy is transferred
directly to high vertical wavenumber (modenumber) near-inertial waves. This
causes an increase in the total shear of the wavefield, which eventually goes
unstable. Turbulence is created and internal wave energy is lost. The loss is
most important at the small scales because these waves are significantly
depleted. The high frequency waves are renewed by a cascade of energy,
possibly accompanied by readjustment in spectral shape, in the Induced Dif-
fusion (steady state) region. The low frequency waves are renewed by the
Parametric Subharmonic Instability mechanism directly from the main energy
source, and the cycle begins again."

REFERENCES

I. C.J.R. Garrett and W. H. Munk, Geophys. Fluid Dyn., 2, 225, (1972); J.
Geophys., 80, 291, (1975); Ann. Rev. Fluid Mech., 11, 339, (1979)

2. W. H. Munk, Evolution of Physical Oceanography, edited by B. A. Warren,
and C. Wunsch, 264, (1981)

3. K. J. Hasselmann, J. Fluid Mech., 12, 481, (1962); J. Fluid Mech., 15, 273,
(1963); J. Fluid Mech., 135, 385, (1963); Rev. Geophys. and Space Phys., 4,
1, (1966); Proc. Roy. Soc., A299, 77, (1967). '

4. Identical equations are found in many branches of physics, e.g., plasma,

laser, and solid state.

P. Ripa, J. Fluid Mech., 103, 87, (1981).

F. H;anyey, Hamiltonian Description of Internal Wave Dynamics (preprint,

1981).

7. P. Muller, and D. J. Olbers, J. Geophys. Res., 80, 3848, (1975).
8. D. J. Olbers, J. Fluid Mech., 74, 375, 219765.
9. C. H. McComas, and F. P. Bretherton, J. Geophys. Res., 82, 1397, (1977).

10. 3. D. Meiss, N. Pomphrey, and K. M. Watson, Proc. Natl. Acad. Sci. (USA),
76, 2109, (1979).

11.  An Eulerian derivation is required for these. Ripa (Ref. 5) gives coupling
coefficients between Eddy Modes and Internal Waves when N = constant
and coriolis force = 0.

12. D. 3. Benney, and P. G. Saffman, Proc. Roy. Soc., A289, 301,(1966).

13. R. C. Davidson, J. Plasma Physics, 1, 341, (1967); Methods in Nonlinear
Plasma Theory, (Academic Press, New York, 1972).

14. D. J. Benney, and A. C. Newell, Studies in Appl. Math., 48, 29, (1969).

15. 3. Meiss (these proceedings) describes a method of trajectory analysis
which obtains statistical properties of test wave systems.

16. For other physical systems (dispersion relations) resonance matching
occurs first with wave quartets. The surface wave-surface wave inter-
action is one example.

17.  G. M. Zaslavskii, and R. Z. Sagdeev, Soviet Physics JETP, 25, 718, (1967).

5.
6.




128
18.
19.
20.
21,
22,

23,
24,

25.

26.
27.

28.
29.

(G. Mi Zaslavskii, and B. ‘Y' Chirikov, Soviet Physics USPEKI, 14, 549,
1972). -

?l. Pc;mphrey, J. D. Meiss, and K. M. Watson, J. Geophys. Res., 85, 1085,
1980).

This quantity was derived in reference 19 from an application of the
fluctuation-dissipation theorem.

K. Kenyon, J. Mar. Res., 26, 208, (1968) used equation (5) to compute
energy transfer rates in an ocean with linear stratification for a low-
mode, pre-GM spectrum.*

K. D. Leaman, J. Phys. Oceanog., 6, 894, (1976).

K. M. Watson, (these proceedings, 1981).

C. H. McComas, J. Phys. Oceanog., 7, 836, (1977). This paper contains
the "scenario for genesis and maintenance of the universal (internal
waves) spectrum” mentioned in the introduction and quoted in the
summary.

C. H. McComas, and P. Muller, The dynamic balance of internal waves
(submitted to J. Phys. Oceanog., 1980).

G. Holloway, J. Phys. Oceanog., 10, 906, (1980).

J. D. Meiss, and K. M. Watson, Internal wave interactions in the Induced
Diffusion approximation (submitted to J. Fiuid Mech., 1980).

F. P. Bretherton, Quart. J. Roy. Met. Soc., 92, 466, (1966).
F. Henyey, (These Proceedings).






